Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We use high-resolution Hubble Space Telescope imaging data of dwarf galaxies in the Local Volume ($$\lesssim {11}\, \mathrm{Mpc}$$) to parameterize 19 newly discovered nuclear star clusters (NSCs). Most of the clusters have stellar masses of $$M_{\star }^{\mathrm{nsc}} \lesssim 10^{6}{\, {\rm M}_{\odot }}$$ and compare to Galactic globular clusters in terms of ellipticity, effective radius, stellar mass, and surface density. The clusters are modelled with a Sérsic profile and their surface brightness evaluated at the effective radius reveals a tight positive correlation to the host galaxy stellar mass. Our data also indicate an increase in slope of the density profiles with increasing mass, perhaps indicating an increasing role for in situ star formation in more massive hosts. We evaluate the scaling relation between the clusters and their host galaxy stellar mass to find an environmental dependence: for NSCs in field galaxies, the slope of the relation is $$\alpha = 0.82^{+0.08}_{-0.08}$$ whereas $$\alpha = 0.55^{+0.06}_{-0.05}$$ for dwarfs in the core of the Virgo cluster. Restricting the fit for the cluster to $$M_{\star }^{\mathrm{gal}} \ge 10^{6.5}{\, {\rm M}_{\odot }}$$ yields $$\alpha = 0.70^{+0.08}_{-0.07}$$, in agreement with the field environment within the 1σ interval. The environmental dependence is due to the lowest-mass nucleated galaxies and we speculate that this is either due to an increased number of progenitor globular clusters merging to become an NSC, or due to the formation of more massive globular clusters in dense environments, depending on the initial globular cluster mass function. Our results clearly corroborate recent results in that there exists a tight connection between NSCs and globular clusters in dwarf galaxies.more » « less
-
ABSTRACT Recent systematic searches for massive black holes (BHs) in local dwarf galaxies led to the discovery of a population of faint active galactic nuclei (AGNs). We investigate the agreement of the BH and AGN populations in the Illustris, TNG, Horizon-AGN, EAGLE, and SIMBA simulations with current observational constraints in low-mass galaxies. We find that some of these simulations produce BHs that are too massive, and that the BH occupation fraction (OF) at z = 0 is not inherited from the simulation seeding modelling. The ability of BHs and their host galaxies to power an AGN depends on BH and galaxy subgrid modelling. The fraction of AGN in low-mass galaxies is not used to calibrate the simulations, and thus can be used to differentiate galaxy formation models. AGN fractions at z = 0 span two orders of magnitude at fixed galaxy stellar mass in simulations, similarly to observational constraints, but uncertainties and degeneracies affect both observations and simulations. The agreement is difficult to interpret due to differences in the masses of simulated and observed BHs, BH OF affected by numerical choices, and an unknown fraction of obscured AGN. Our work advocates for more thorough comparisons with observations to improve the modelling of cosmological simulations, and our understanding of BH and galaxy physics in the low-mass regime. The mass of BHs, their ability to efficiently accrete gas, and the AGN fraction in low-mass galaxies have important implications for the build-up of the entire BH and galaxy populations with time.more » « less
-
Abstract We review the current knowledge about nuclear star clusters (NSCs), the spectacularly dense and massive assemblies of stars found at the centers of most galaxies. Recent observational and theoretical works suggest that many NSC properties, including their masses, densities, and stellar populations, vary with the properties of their host galaxies. Understanding the formation, growth, and ultimate fate of NSCs, therefore, is crucial for a complete picture of galaxy evolution. Throughout the review, we attempt to combine and distill the available evidence into a coherent picture of NSC evolution. Combined, this evidence points to a clear transition mass in galaxies of $$\sim 10^9\,M_\odot$$ ∼ 10 9 M ⊙ where the characteristics of nuclear star clusters change. We argue that at lower masses, NSCs are formed primarily from globular clusters that inspiral into the center of the galaxy, while at higher masses, star formation within the nucleus forms the bulk of the NSC. We also discuss the co-existence of NSCs and central black holes, and how their growth may be linked. The extreme densities of NSCs and their interaction with massive black holes lead to a wide range of unique phenomena including tidal disruption and gravitational-wave events. Finally, we review the evidence that many NSCs end up in the halos of massive galaxies stripped of the stars that surrounded them, thus providing valuable tracers of the galaxies’ accretion histories.more » « less
-
ABSTRACT Galactic bars can drive cold gas inflows towards the centres of galaxies. The gas transport happens primarily through the so-called bar dust lanes, which connect the galactic disc at kpc scales to the nuclear rings at hundreds of pc scales much like two gigantic galactic rivers. Once in the ring, the gas can fuel star formation activity, galactic outflows, and central supermassive black holes. Measuring the mass inflow rates is therefore important to understanding the mass/energy budget and evolution of galactic nuclei. In this work, we use CO datacubes from the PHANGS-ALMA survey and a simple geometrical method to measure the bar-driven mass inflow rate on to the nuclear ring of the barred galaxy NGC 1097. The method assumes that the gas velocity in the bar lanes is parallel to the lanes in the frame co-rotating with the bar, and allows one to derive the inflow rates from sufficiently sensitive and resolved position–position–velocity diagrams if the bar pattern speed and galaxy orientations are known. We find an inflow rate of $$\dot{M}=(3.0 \pm 2.1)\, \rm M_\odot \, yr^{-1}$$ averaged over a time span of 40 Myr, which varies by a factor of a few over time-scales of ∼10 Myr. Most of the inflow appears to be consumed by star formation in the ring, which is currently occurring at a star formation rate (SFR) of $$\simeq\!1.8\!-\!2 \, \rm M_\odot \, yr^{-1}$$, suggesting that the inflow is causally controlling the SFR in the ring as a function of time.more » « less
-
ABSTRACT We estimate the mass of the intermediate-mass black hole at the heart of the dwarf elliptical galaxy NGC 404 using Atacama Large Millimetre/submillimetre Array (ALMA) observations of the molecular interstellar medium at an unprecedented linear resolution of ≈0.5 pc, in combination with existing stellar kinematic information. These ALMA observations reveal a central disc/torus of molecular gas clearly rotating around the black hole. This disc is surrounded by a morphologically and kinematically complex flocculent distribution of molecular clouds, that we resolve in detail. Continuum emission is detected from the central parts of NGC 404, likely arising from the Rayleigh–Jeans tail of emission from dust around the nucleus, and potentially from dusty massive star-forming clumps at discrete locations in the disc. Several dynamical measurements of the black hole mass in this system have been made in the past, but they do not agree. We show here that both the observed molecular gas and stellar kinematics independently require a ≈5 × 105 M⊙ black hole once we include the contribution of the molecular gas to the potential. Our best estimate comes from the high-resolution molecular gas kinematics, suggesting the black hole mass of this system is 5.5$$^{+4.1}_{-3.8}\times 10^5$$ M⊙ (at the 99 per cent confidence level), in good agreement with our revised stellar kinematic measurement and broadly consistent with extrapolations from the black hole mass–velocity dispersion and black hole mass–bulge mass relations. This highlights the need to accurately determine the mass and distribution of each dynamically important component around intermediate-mass black holes when attempting to estimate their masses.more » « less
An official website of the United States government
